DTC 52, 53, 55 Knock Sensor Circuit

— CIRCUIT DESCRIPTION

Knock sensors are fitted one each to the front and rear of the left side of the cylinder block to detect engine knocking. This sensor contains a piezoelectric element which generates a voltage when it becomes deformed, which occurs when the cylinder block vibrates due to knocking. If engine knocking occurs, ignition timing is retarded to suppress it.

DTC No.	Diagnostic Trouble Code Detecting Condition	Trouble Area
	No No. 1 knock sensor signal to ECM for 4 crank revo-	Open or short in No. 1 knock sensor circuit
52	lutions with engine speed between 1,600 rpm ~ 5,200	No. 1 knock sensor (looseness)
	rpm.	• ECM
53	Engine control computer (for knock control) malfunc-	• ECM
53	tion at engine speed between 650 rpm and 5,200 rpm.	
	No No. 2 knock sensor signal to ECM for 4 crank revo-	Open or short in No. 2 knock sensor circuit
55	lutions with engine speed between 1,600 rpm ~ 5,200	No. 2 knock sensor (looseness)
	rpm.	• ECM

If the ECM detects the above diagnosis conditions, it operates the fail safe function in which the corrective retard angle value is set to the maximum value.

— CIRCUIT DESCRIPTION (Cont'd) -

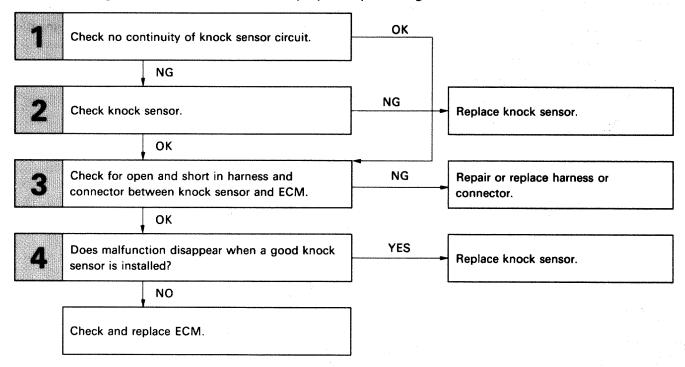
DIAGNOSIS TROUBLE CODE DETECTION DRIVING PATTERN

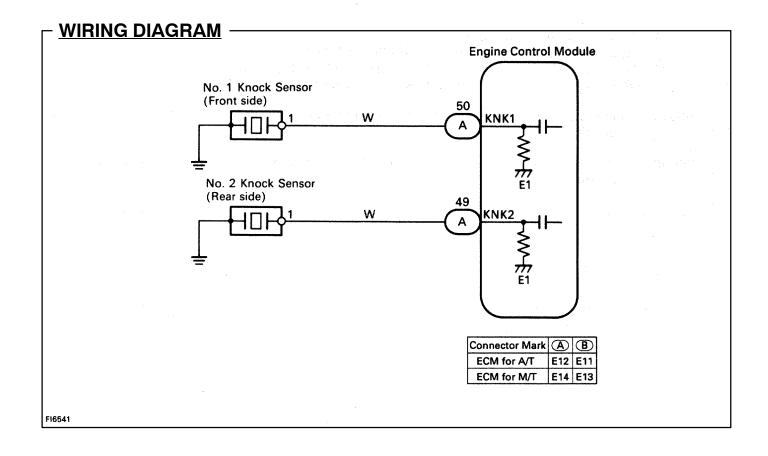
Purpose of the driving pattern:

- (a) To simulate diagnostic trouble code detecting condition after diagnostic trouble code is recorded.
- (b) To check that the malfunction is corrected when the repair is completed confirming that diagnostic trouble code is no longer detected.

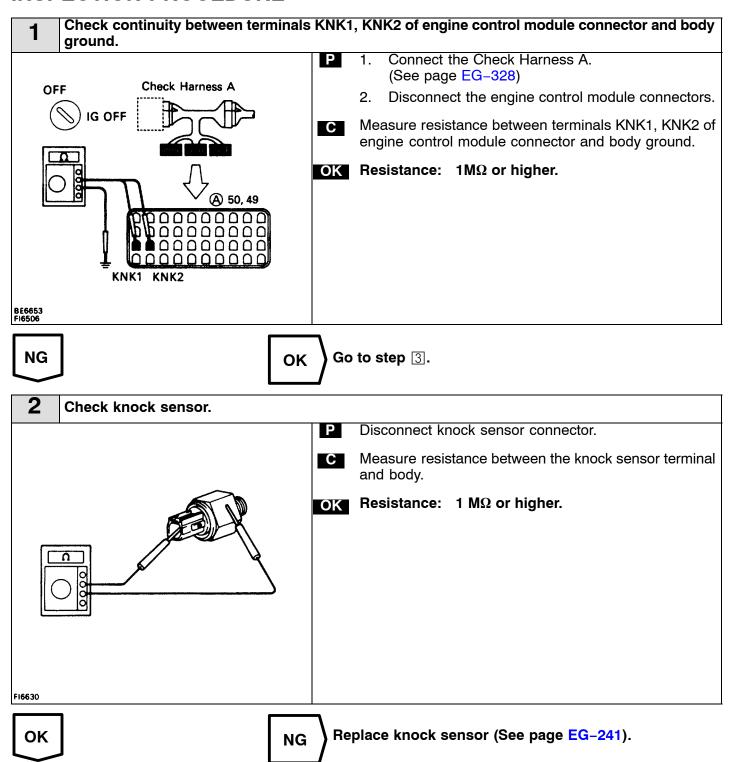
- 1) Start the engine and warm up.
- (2) After the engine is warmed up, let it idle for 3 min.
- (Rapidly depress the accelerator pedal and suddenly release it.)

HINT: If a malfunction exists, the malfunction indicator lamp will light up when sudden racing is performed.


NOTICE: If the conditions in this test are not strictly followed, detection of the malfunction will not be possible.


— DIAGNOSTIC CHART -

HINT: If diagnostic trouble code 52 is displayed, check No. 1 knock sensor (for left bank) circuit.


If diagnostic trouble code 55 is displayed, check No. 2 knock sensor (for right bank) circuit.

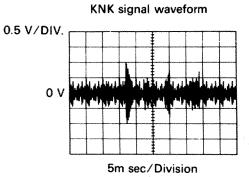
If diagnostic trouble code 53 is displayed, replace engine control module.

INSPECTION PROCEDURE

Check for open and short in harness and connectors between engine control module and knock sensor (See page IN-33).

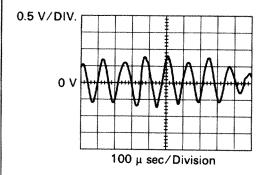
ок

NG Repair or replace harness or connector.


Does malfunction disappear when a good knock sensor is installed?

NO

YES Replace knock sensor (See page EG-241).


Check and replace engine control module.

Reference INSPECTION USING OSCILLOSCOPE

 With the engine racing (4,000 rpm) measure waveform between terminals KNK1, KNK2 of engine control module and body ground.

HINT: The correct waveform appears as shown in the illustration on the left.

 Spread the time on the horizontal axis, and confirm that period of the wave is 123 μ sec. (Normal mode vibration frequency of knock sensor: 8.1 KHz).

HINT: If normal mode vibration frequency is not 8.1 KHz, the sensor is malfunctioning.

-MEMO-